If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-1.8t^2+20t+90=0
a = -1.8; b = 20; c = +90;
Δ = b2-4ac
Δ = 202-4·(-1.8)·90
Δ = 1048
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1048}=\sqrt{4*262}=\sqrt{4}*\sqrt{262}=2\sqrt{262}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-2\sqrt{262}}{2*-1.8}=\frac{-20-2\sqrt{262}}{-3.6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+2\sqrt{262}}{2*-1.8}=\frac{-20+2\sqrt{262}}{-3.6} $
| 8x+10=7x+49 | | 5v+15=10 | | 1/3x-3=-4 | | c+13=4 | | 115=7x+1600 | | 3l+2=24 | | 2/3x-5+8/9x=-19 | | 6.6-4y=12 | | 3d–2=4 | | 5y+2=1y-10 | | 3.75-2.36=m | | 2.5x+2=24 | | 5m-3,2=2m+2,8 | | 4=8x-17 | | 12x^2=432 | | M/18x=12 | | 20+0.05x=10+0.02x | | x+8=2x-27 | | 2x+1/2x+2=24 | | 2(5y-7)=-24 | | 35x67= | | 3/5x+2/7=5/7+1/5x | | 30(2)+40(3)=x | | 24=2l+1/2l+2 | | X+103+6x+7+2x=180 | | 2x(2x-6)=4(x-3) | | (8x+5)=(12x−12) | | 19x=10x+90 | | 5g=4(-8+4g)=1-g | | (y)(y+2)=168 | | 2x^2+8x-100=0 | | q/3+2=-4 |